Switchable Carrier
Switchable carriers for medical intervention
Switchable drug carriers can be created using polymers, which undergo structural changes either at the chemical (molecular) level or in their polymer morphology in response to specific triggers. In a number of projects, we are exploring the extent to which this type of response can be controlled and transferred to a pharmaceutical context – for example, through alterations of particle dimensions or on-demand release. The spectrum of examples is manifold, ranging from pH-responsive microgels to various types of hydrophobic, shape-switching particles as well as concepts of implants.
Our expertise in this field is reflected in a substantial number of own publications, including:
O. Altabal, C. Wischke, A. Lendlein. Design of Reservoirs Enabling Stress-Induced Sequential Release Systems. Pharmaceutics2022, 14(12), 2611; https://doi.org/10.3390/pharmaceutics14122611
F. Friess, A. Lendlein, C. Wischke, Switching microobjects from low to high aspect ratios by a shape-memory effect, Soft Matter 2021, 17, 9326-9331 https://doi.org/10.1039/D1SM00947H
F. Friess, A. Lendlein, C. Wischke, Size control of shape-switchable micronetworks by fast two-step microfluidic templating. J Mater Res 36 3248-3257 2021. DOI:10.1557/s43578-021-00295-2
D.C. Tuncaboylu, F. Friess, C. Wischke, A. Lendlein. A multifunctional multimaterial system for on-demand protein release. J Control Release, 284 (2018), 240-247. https://dx.doi.org/10.1016/j.jconrel.2018.06.022
C. Löwenberg, M. Balk, C. Wischke, M. Behl, A. Lendlein, Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks, Acc Chem Res, 50 (2017) 723-732. http://dx.doi.org/10.1021/acs.accounts.6b00584
D. Ceylan Tuncaboylu, C. Wischke, F. Störmann, A. Lendlein. Microgels from microfluidic templating and photoinduced crosslinking of cinnamylidene acetic acid modified precursors. React Funct Polym 112 (2017), 68-73. http://dx.doi.org/10.1016/j.reactfunctpolym.2016.12.015
F. Friess, U. Nöchel, A. Lendlein, C. Wischke, Polymer Micronetworks with Shape-Memory as Future Platform to Explore Shape-Dependent Biological Effects, Adv Healthcare Mat, 3 (2014), 1986-1990. http://dx.doi.org/10.1002/adhm.201400433
C. Wischke, A. Lendlein, Method for Preparation, Programming, and Characterization of Miniaturized Particulate Shape-Memory Polymer Matrices, Langmuir 30 (2014), 2820-2827. http://dx.doi.org/10.1021/la4025926
C. Wischke, M. Schossig, A. Lendlein, Shape-Memory Effect of Micro-/Nanoparticles from Thermoplastic Multiblock Copolymers, Small, 10 (2014), 83-87. http://dx.doi.org/10.1002/smll.201202213
C. Wischke, M. Behl, A. Lendlein, Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation, Expert Opin Drug Delivery, 10 (2013), 1193-1205. http://dx.doi.org/10.1517/17425247.2013.797406
C. Wischke, A. Lendlein, Shape-Memory Polymers as Drug Carriers-A Multifunctional System, Pharm Res, 27 (2010) 527-529.DOI: 10.1007/s11095-010-0062-5
A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications, Expert Rev Med Devic, 7 (2010) 357-379. DOI: 10.1586/erd.10.8
C. Wischke, A.T. Neffe, S. Steuer, A. Lendlein, Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release, J Control Release, 138 (2009) 243-250. http://dx.doi.org/10.1016/j.jconrel.2009.05.027




